3.17.65 \(\int (A+B x) (d+e x)^m (a^2+2 a b x+b^2 x^2) \, dx\)

Optimal. Leaf size=138 \[ -\frac {(b d-a e)^2 (B d-A e) (d+e x)^{m+1}}{e^4 (m+1)}+\frac {(b d-a e) (d+e x)^{m+2} (-a B e-2 A b e+3 b B d)}{e^4 (m+2)}-\frac {b (d+e x)^{m+3} (-2 a B e-A b e+3 b B d)}{e^4 (m+3)}+\frac {b^2 B (d+e x)^{m+4}}{e^4 (m+4)} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {27, 77} \begin {gather*} -\frac {(b d-a e)^2 (B d-A e) (d+e x)^{m+1}}{e^4 (m+1)}+\frac {(b d-a e) (d+e x)^{m+2} (-a B e-2 A b e+3 b B d)}{e^4 (m+2)}-\frac {b (d+e x)^{m+3} (-2 a B e-A b e+3 b B d)}{e^4 (m+3)}+\frac {b^2 B (d+e x)^{m+4}}{e^4 (m+4)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*x)*(d + e*x)^m*(a^2 + 2*a*b*x + b^2*x^2),x]

[Out]

-(((b*d - a*e)^2*(B*d - A*e)*(d + e*x)^(1 + m))/(e^4*(1 + m))) + ((b*d - a*e)*(3*b*B*d - 2*A*b*e - a*B*e)*(d +
 e*x)^(2 + m))/(e^4*(2 + m)) - (b*(3*b*B*d - A*b*e - 2*a*B*e)*(d + e*x)^(3 + m))/(e^4*(3 + m)) + (b^2*B*(d + e
*x)^(4 + m))/(e^4*(4 + m))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin {align*} \int (A+B x) (d+e x)^m \left (a^2+2 a b x+b^2 x^2\right ) \, dx &=\int (a+b x)^2 (A+B x) (d+e x)^m \, dx\\ &=\int \left (\frac {(-b d+a e)^2 (-B d+A e) (d+e x)^m}{e^3}+\frac {(-b d+a e) (-3 b B d+2 A b e+a B e) (d+e x)^{1+m}}{e^3}+\frac {b (-3 b B d+A b e+2 a B e) (d+e x)^{2+m}}{e^3}+\frac {b^2 B (d+e x)^{3+m}}{e^3}\right ) \, dx\\ &=-\frac {(b d-a e)^2 (B d-A e) (d+e x)^{1+m}}{e^4 (1+m)}+\frac {(b d-a e) (3 b B d-2 A b e-a B e) (d+e x)^{2+m}}{e^4 (2+m)}-\frac {b (3 b B d-A b e-2 a B e) (d+e x)^{3+m}}{e^4 (3+m)}+\frac {b^2 B (d+e x)^{4+m}}{e^4 (4+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 122, normalized size = 0.88 \begin {gather*} \frac {(d+e x)^{m+1} \left (-\frac {b (d+e x)^2 (-2 a B e-A b e+3 b B d)}{m+3}+\frac {(d+e x) (b d-a e) (-a B e-2 A b e+3 b B d)}{m+2}-\frac {(b d-a e)^2 (B d-A e)}{m+1}+\frac {b^2 B (d+e x)^3}{m+4}\right )}{e^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x)*(d + e*x)^m*(a^2 + 2*a*b*x + b^2*x^2),x]

[Out]

((d + e*x)^(1 + m)*(-(((b*d - a*e)^2*(B*d - A*e))/(1 + m)) + ((b*d - a*e)*(3*b*B*d - 2*A*b*e - a*B*e)*(d + e*x
))/(2 + m) - (b*(3*b*B*d - A*b*e - 2*a*B*e)*(d + e*x)^2)/(3 + m) + (b^2*B*(d + e*x)^3)/(4 + m)))/e^4

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.15, size = 0, normalized size = 0.00 \begin {gather*} \int (A+B x) (d+e x)^m \left (a^2+2 a b x+b^2 x^2\right ) \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(A + B*x)*(d + e*x)^m*(a^2 + 2*a*b*x + b^2*x^2),x]

[Out]

Defer[IntegrateAlgebraic][(A + B*x)*(d + e*x)^m*(a^2 + 2*a*b*x + b^2*x^2), x]

________________________________________________________________________________________

fricas [B]  time = 0.48, size = 660, normalized size = 4.78 \begin {gather*} \frac {{\left (A a^{2} d e^{3} m^{3} - 6 \, B b^{2} d^{4} + 24 \, A a^{2} d e^{3} + 8 \, {\left (2 \, B a b + A b^{2}\right )} d^{3} e - 12 \, {\left (B a^{2} + 2 \, A a b\right )} d^{2} e^{2} + {\left (B b^{2} e^{4} m^{3} + 6 \, B b^{2} e^{4} m^{2} + 11 \, B b^{2} e^{4} m + 6 \, B b^{2} e^{4}\right )} x^{4} + {\left (8 \, {\left (2 \, B a b + A b^{2}\right )} e^{4} + {\left (B b^{2} d e^{3} + {\left (2 \, B a b + A b^{2}\right )} e^{4}\right )} m^{3} + {\left (3 \, B b^{2} d e^{3} + 7 \, {\left (2 \, B a b + A b^{2}\right )} e^{4}\right )} m^{2} + 2 \, {\left (B b^{2} d e^{3} + 7 \, {\left (2 \, B a b + A b^{2}\right )} e^{4}\right )} m\right )} x^{3} + {\left (9 \, A a^{2} d e^{3} - {\left (B a^{2} + 2 \, A a b\right )} d^{2} e^{2}\right )} m^{2} + {\left (12 \, {\left (B a^{2} + 2 \, A a b\right )} e^{4} + {\left ({\left (2 \, B a b + A b^{2}\right )} d e^{3} + {\left (B a^{2} + 2 \, A a b\right )} e^{4}\right )} m^{3} - {\left (3 \, B b^{2} d^{2} e^{2} - 5 \, {\left (2 \, B a b + A b^{2}\right )} d e^{3} - 8 \, {\left (B a^{2} + 2 \, A a b\right )} e^{4}\right )} m^{2} - {\left (3 \, B b^{2} d^{2} e^{2} - 4 \, {\left (2 \, B a b + A b^{2}\right )} d e^{3} - 19 \, {\left (B a^{2} + 2 \, A a b\right )} e^{4}\right )} m\right )} x^{2} + {\left (26 \, A a^{2} d e^{3} + 2 \, {\left (2 \, B a b + A b^{2}\right )} d^{3} e - 7 \, {\left (B a^{2} + 2 \, A a b\right )} d^{2} e^{2}\right )} m + {\left (24 \, A a^{2} e^{4} + {\left (A a^{2} e^{4} + {\left (B a^{2} + 2 \, A a b\right )} d e^{3}\right )} m^{3} + {\left (9 \, A a^{2} e^{4} - 2 \, {\left (2 \, B a b + A b^{2}\right )} d^{2} e^{2} + 7 \, {\left (B a^{2} + 2 \, A a b\right )} d e^{3}\right )} m^{2} + 2 \, {\left (3 \, B b^{2} d^{3} e + 13 \, A a^{2} e^{4} - 4 \, {\left (2 \, B a b + A b^{2}\right )} d^{2} e^{2} + 6 \, {\left (B a^{2} + 2 \, A a b\right )} d e^{3}\right )} m\right )} x\right )} {\left (e x + d\right )}^{m}}{e^{4} m^{4} + 10 \, e^{4} m^{3} + 35 \, e^{4} m^{2} + 50 \, e^{4} m + 24 \, e^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^m*(b^2*x^2+2*a*b*x+a^2),x, algorithm="fricas")

[Out]

(A*a^2*d*e^3*m^3 - 6*B*b^2*d^4 + 24*A*a^2*d*e^3 + 8*(2*B*a*b + A*b^2)*d^3*e - 12*(B*a^2 + 2*A*a*b)*d^2*e^2 + (
B*b^2*e^4*m^3 + 6*B*b^2*e^4*m^2 + 11*B*b^2*e^4*m + 6*B*b^2*e^4)*x^4 + (8*(2*B*a*b + A*b^2)*e^4 + (B*b^2*d*e^3
+ (2*B*a*b + A*b^2)*e^4)*m^3 + (3*B*b^2*d*e^3 + 7*(2*B*a*b + A*b^2)*e^4)*m^2 + 2*(B*b^2*d*e^3 + 7*(2*B*a*b + A
*b^2)*e^4)*m)*x^3 + (9*A*a^2*d*e^3 - (B*a^2 + 2*A*a*b)*d^2*e^2)*m^2 + (12*(B*a^2 + 2*A*a*b)*e^4 + ((2*B*a*b +
A*b^2)*d*e^3 + (B*a^2 + 2*A*a*b)*e^4)*m^3 - (3*B*b^2*d^2*e^2 - 5*(2*B*a*b + A*b^2)*d*e^3 - 8*(B*a^2 + 2*A*a*b)
*e^4)*m^2 - (3*B*b^2*d^2*e^2 - 4*(2*B*a*b + A*b^2)*d*e^3 - 19*(B*a^2 + 2*A*a*b)*e^4)*m)*x^2 + (26*A*a^2*d*e^3
+ 2*(2*B*a*b + A*b^2)*d^3*e - 7*(B*a^2 + 2*A*a*b)*d^2*e^2)*m + (24*A*a^2*e^4 + (A*a^2*e^4 + (B*a^2 + 2*A*a*b)*
d*e^3)*m^3 + (9*A*a^2*e^4 - 2*(2*B*a*b + A*b^2)*d^2*e^2 + 7*(B*a^2 + 2*A*a*b)*d*e^3)*m^2 + 2*(3*B*b^2*d^3*e +
13*A*a^2*e^4 - 4*(2*B*a*b + A*b^2)*d^2*e^2 + 6*(B*a^2 + 2*A*a*b)*d*e^3)*m)*x)*(e*x + d)^m/(e^4*m^4 + 10*e^4*m^
3 + 35*e^4*m^2 + 50*e^4*m + 24*e^4)

________________________________________________________________________________________

giac [B]  time = 0.26, size = 1267, normalized size = 9.18

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^m*(b^2*x^2+2*a*b*x+a^2),x, algorithm="giac")

[Out]

((x*e + d)^m*B*b^2*m^3*x^4*e^4 + (x*e + d)^m*B*b^2*d*m^3*x^3*e^3 + 2*(x*e + d)^m*B*a*b*m^3*x^3*e^4 + (x*e + d)
^m*A*b^2*m^3*x^3*e^4 + 6*(x*e + d)^m*B*b^2*m^2*x^4*e^4 + 2*(x*e + d)^m*B*a*b*d*m^3*x^2*e^3 + (x*e + d)^m*A*b^2
*d*m^3*x^2*e^3 + 3*(x*e + d)^m*B*b^2*d*m^2*x^3*e^3 - 3*(x*e + d)^m*B*b^2*d^2*m^2*x^2*e^2 + (x*e + d)^m*B*a^2*m
^3*x^2*e^4 + 2*(x*e + d)^m*A*a*b*m^3*x^2*e^4 + 14*(x*e + d)^m*B*a*b*m^2*x^3*e^4 + 7*(x*e + d)^m*A*b^2*m^2*x^3*
e^4 + 11*(x*e + d)^m*B*b^2*m*x^4*e^4 + (x*e + d)^m*B*a^2*d*m^3*x*e^3 + 2*(x*e + d)^m*A*a*b*d*m^3*x*e^3 + 10*(x
*e + d)^m*B*a*b*d*m^2*x^2*e^3 + 5*(x*e + d)^m*A*b^2*d*m^2*x^2*e^3 + 2*(x*e + d)^m*B*b^2*d*m*x^3*e^3 - 4*(x*e +
 d)^m*B*a*b*d^2*m^2*x*e^2 - 2*(x*e + d)^m*A*b^2*d^2*m^2*x*e^2 - 3*(x*e + d)^m*B*b^2*d^2*m*x^2*e^2 + 6*(x*e + d
)^m*B*b^2*d^3*m*x*e + (x*e + d)^m*A*a^2*m^3*x*e^4 + 8*(x*e + d)^m*B*a^2*m^2*x^2*e^4 + 16*(x*e + d)^m*A*a*b*m^2
*x^2*e^4 + 28*(x*e + d)^m*B*a*b*m*x^3*e^4 + 14*(x*e + d)^m*A*b^2*m*x^3*e^4 + 6*(x*e + d)^m*B*b^2*x^4*e^4 + (x*
e + d)^m*A*a^2*d*m^3*e^3 + 7*(x*e + d)^m*B*a^2*d*m^2*x*e^3 + 14*(x*e + d)^m*A*a*b*d*m^2*x*e^3 + 8*(x*e + d)^m*
B*a*b*d*m*x^2*e^3 + 4*(x*e + d)^m*A*b^2*d*m*x^2*e^3 - (x*e + d)^m*B*a^2*d^2*m^2*e^2 - 2*(x*e + d)^m*A*a*b*d^2*
m^2*e^2 - 16*(x*e + d)^m*B*a*b*d^2*m*x*e^2 - 8*(x*e + d)^m*A*b^2*d^2*m*x*e^2 + 4*(x*e + d)^m*B*a*b*d^3*m*e + 2
*(x*e + d)^m*A*b^2*d^3*m*e - 6*(x*e + d)^m*B*b^2*d^4 + 9*(x*e + d)^m*A*a^2*m^2*x*e^4 + 19*(x*e + d)^m*B*a^2*m*
x^2*e^4 + 38*(x*e + d)^m*A*a*b*m*x^2*e^4 + 16*(x*e + d)^m*B*a*b*x^3*e^4 + 8*(x*e + d)^m*A*b^2*x^3*e^4 + 9*(x*e
 + d)^m*A*a^2*d*m^2*e^3 + 12*(x*e + d)^m*B*a^2*d*m*x*e^3 + 24*(x*e + d)^m*A*a*b*d*m*x*e^3 - 7*(x*e + d)^m*B*a^
2*d^2*m*e^2 - 14*(x*e + d)^m*A*a*b*d^2*m*e^2 + 16*(x*e + d)^m*B*a*b*d^3*e + 8*(x*e + d)^m*A*b^2*d^3*e + 26*(x*
e + d)^m*A*a^2*m*x*e^4 + 12*(x*e + d)^m*B*a^2*x^2*e^4 + 24*(x*e + d)^m*A*a*b*x^2*e^4 + 26*(x*e + d)^m*A*a^2*d*
m*e^3 - 12*(x*e + d)^m*B*a^2*d^2*e^2 - 24*(x*e + d)^m*A*a*b*d^2*e^2 + 24*(x*e + d)^m*A*a^2*x*e^4 + 24*(x*e + d
)^m*A*a^2*d*e^3)/(m^4*e^4 + 10*m^3*e^4 + 35*m^2*e^4 + 50*m*e^4 + 24*e^4)

________________________________________________________________________________________

maple [B]  time = 0.06, size = 576, normalized size = 4.17 \begin {gather*} \frac {\left (B \,b^{2} e^{3} m^{3} x^{3}+A \,b^{2} e^{3} m^{3} x^{2}+2 B a b \,e^{3} m^{3} x^{2}+6 B \,b^{2} e^{3} m^{2} x^{3}+2 A a b \,e^{3} m^{3} x +7 A \,b^{2} e^{3} m^{2} x^{2}+B \,a^{2} e^{3} m^{3} x +14 B a b \,e^{3} m^{2} x^{2}-3 B \,b^{2} d \,e^{2} m^{2} x^{2}+11 B \,b^{2} e^{3} m \,x^{3}+A \,a^{2} e^{3} m^{3}+16 A a b \,e^{3} m^{2} x -2 A \,b^{2} d \,e^{2} m^{2} x +14 A \,b^{2} e^{3} m \,x^{2}+8 B \,a^{2} e^{3} m^{2} x -4 B a b d \,e^{2} m^{2} x +28 B a b \,e^{3} m \,x^{2}-9 B \,b^{2} d \,e^{2} m \,x^{2}+6 B \,b^{2} x^{3} e^{3}+9 A \,a^{2} e^{3} m^{2}-2 A a b d \,e^{2} m^{2}+38 A a b \,e^{3} m x -10 A \,b^{2} d \,e^{2} m x +8 A \,b^{2} e^{3} x^{2}-B \,a^{2} d \,e^{2} m^{2}+19 B \,a^{2} e^{3} m x -20 B a b d \,e^{2} m x +16 B a b \,e^{3} x^{2}+6 B \,b^{2} d^{2} e m x -6 B \,b^{2} d \,e^{2} x^{2}+26 A \,a^{2} e^{3} m -14 A a b d \,e^{2} m +24 A a b \,e^{3} x +2 A \,b^{2} d^{2} e m -8 A \,b^{2} d \,e^{2} x -7 B \,a^{2} d \,e^{2} m +12 B \,a^{2} e^{3} x +4 B a b \,d^{2} e m -16 B a b d \,e^{2} x +6 B \,b^{2} d^{2} e x +24 A \,a^{2} e^{3}-24 A a b d \,e^{2}+8 A \,b^{2} d^{2} e -12 B \,a^{2} d \,e^{2}+16 B a b \,d^{2} e -6 B \,b^{2} d^{3}\right ) \left (e x +d \right )^{m +1}}{\left (m^{4}+10 m^{3}+35 m^{2}+50 m +24\right ) e^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(e*x+d)^m*(b^2*x^2+2*a*b*x+a^2),x)

[Out]

(e*x+d)^(m+1)*(B*b^2*e^3*m^3*x^3+A*b^2*e^3*m^3*x^2+2*B*a*b*e^3*m^3*x^2+6*B*b^2*e^3*m^2*x^3+2*A*a*b*e^3*m^3*x+7
*A*b^2*e^3*m^2*x^2+B*a^2*e^3*m^3*x+14*B*a*b*e^3*m^2*x^2-3*B*b^2*d*e^2*m^2*x^2+11*B*b^2*e^3*m*x^3+A*a^2*e^3*m^3
+16*A*a*b*e^3*m^2*x-2*A*b^2*d*e^2*m^2*x+14*A*b^2*e^3*m*x^2+8*B*a^2*e^3*m^2*x-4*B*a*b*d*e^2*m^2*x+28*B*a*b*e^3*
m*x^2-9*B*b^2*d*e^2*m*x^2+6*B*b^2*e^3*x^3+9*A*a^2*e^3*m^2-2*A*a*b*d*e^2*m^2+38*A*a*b*e^3*m*x-10*A*b^2*d*e^2*m*
x+8*A*b^2*e^3*x^2-B*a^2*d*e^2*m^2+19*B*a^2*e^3*m*x-20*B*a*b*d*e^2*m*x+16*B*a*b*e^3*x^2+6*B*b^2*d^2*e*m*x-6*B*b
^2*d*e^2*x^2+26*A*a^2*e^3*m-14*A*a*b*d*e^2*m+24*A*a*b*e^3*x+2*A*b^2*d^2*e*m-8*A*b^2*d*e^2*x-7*B*a^2*d*e^2*m+12
*B*a^2*e^3*x+4*B*a*b*d^2*e*m-16*B*a*b*d*e^2*x+6*B*b^2*d^2*e*x+24*A*a^2*e^3-24*A*a*b*d*e^2+8*A*b^2*d^2*e-12*B*a
^2*d*e^2+16*B*a*b*d^2*e-6*B*b^2*d^3)/e^4/(m^4+10*m^3+35*m^2+50*m+24)

________________________________________________________________________________________

maxima [B]  time = 0.76, size = 364, normalized size = 2.64 \begin {gather*} \frac {{\left (e^{2} {\left (m + 1\right )} x^{2} + d e m x - d^{2}\right )} {\left (e x + d\right )}^{m} B a^{2}}{{\left (m^{2} + 3 \, m + 2\right )} e^{2}} + \frac {2 \, {\left (e^{2} {\left (m + 1\right )} x^{2} + d e m x - d^{2}\right )} {\left (e x + d\right )}^{m} A a b}{{\left (m^{2} + 3 \, m + 2\right )} e^{2}} + \frac {{\left (e x + d\right )}^{m + 1} A a^{2}}{e {\left (m + 1\right )}} + \frac {2 \, {\left ({\left (m^{2} + 3 \, m + 2\right )} e^{3} x^{3} + {\left (m^{2} + m\right )} d e^{2} x^{2} - 2 \, d^{2} e m x + 2 \, d^{3}\right )} {\left (e x + d\right )}^{m} B a b}{{\left (m^{3} + 6 \, m^{2} + 11 \, m + 6\right )} e^{3}} + \frac {{\left ({\left (m^{2} + 3 \, m + 2\right )} e^{3} x^{3} + {\left (m^{2} + m\right )} d e^{2} x^{2} - 2 \, d^{2} e m x + 2 \, d^{3}\right )} {\left (e x + d\right )}^{m} A b^{2}}{{\left (m^{3} + 6 \, m^{2} + 11 \, m + 6\right )} e^{3}} + \frac {{\left ({\left (m^{3} + 6 \, m^{2} + 11 \, m + 6\right )} e^{4} x^{4} + {\left (m^{3} + 3 \, m^{2} + 2 \, m\right )} d e^{3} x^{3} - 3 \, {\left (m^{2} + m\right )} d^{2} e^{2} x^{2} + 6 \, d^{3} e m x - 6 \, d^{4}\right )} {\left (e x + d\right )}^{m} B b^{2}}{{\left (m^{4} + 10 \, m^{3} + 35 \, m^{2} + 50 \, m + 24\right )} e^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^m*(b^2*x^2+2*a*b*x+a^2),x, algorithm="maxima")

[Out]

(e^2*(m + 1)*x^2 + d*e*m*x - d^2)*(e*x + d)^m*B*a^2/((m^2 + 3*m + 2)*e^2) + 2*(e^2*(m + 1)*x^2 + d*e*m*x - d^2
)*(e*x + d)^m*A*a*b/((m^2 + 3*m + 2)*e^2) + (e*x + d)^(m + 1)*A*a^2/(e*(m + 1)) + 2*((m^2 + 3*m + 2)*e^3*x^3 +
 (m^2 + m)*d*e^2*x^2 - 2*d^2*e*m*x + 2*d^3)*(e*x + d)^m*B*a*b/((m^3 + 6*m^2 + 11*m + 6)*e^3) + ((m^2 + 3*m + 2
)*e^3*x^3 + (m^2 + m)*d*e^2*x^2 - 2*d^2*e*m*x + 2*d^3)*(e*x + d)^m*A*b^2/((m^3 + 6*m^2 + 11*m + 6)*e^3) + ((m^
3 + 6*m^2 + 11*m + 6)*e^4*x^4 + (m^3 + 3*m^2 + 2*m)*d*e^3*x^3 - 3*(m^2 + m)*d^2*e^2*x^2 + 6*d^3*e*m*x - 6*d^4)
*(e*x + d)^m*B*b^2/((m^4 + 10*m^3 + 35*m^2 + 50*m + 24)*e^4)

________________________________________________________________________________________

mupad [B]  time = 2.40, size = 676, normalized size = 4.90 \begin {gather*} \frac {{\left (d+e\,x\right )}^m\,\left (-B\,a^2\,d^2\,e^2\,m^2-7\,B\,a^2\,d^2\,e^2\,m-12\,B\,a^2\,d^2\,e^2+A\,a^2\,d\,e^3\,m^3+9\,A\,a^2\,d\,e^3\,m^2+26\,A\,a^2\,d\,e^3\,m+24\,A\,a^2\,d\,e^3+4\,B\,a\,b\,d^3\,e\,m+16\,B\,a\,b\,d^3\,e-2\,A\,a\,b\,d^2\,e^2\,m^2-14\,A\,a\,b\,d^2\,e^2\,m-24\,A\,a\,b\,d^2\,e^2-6\,B\,b^2\,d^4+2\,A\,b^2\,d^3\,e\,m+8\,A\,b^2\,d^3\,e\right )}{e^4\,\left (m^4+10\,m^3+35\,m^2+50\,m+24\right )}+\frac {x\,{\left (d+e\,x\right )}^m\,\left (B\,a^2\,d\,e^3\,m^3+7\,B\,a^2\,d\,e^3\,m^2+12\,B\,a^2\,d\,e^3\,m+A\,a^2\,e^4\,m^3+9\,A\,a^2\,e^4\,m^2+26\,A\,a^2\,e^4\,m+24\,A\,a^2\,e^4-4\,B\,a\,b\,d^2\,e^2\,m^2-16\,B\,a\,b\,d^2\,e^2\,m+2\,A\,a\,b\,d\,e^3\,m^3+14\,A\,a\,b\,d\,e^3\,m^2+24\,A\,a\,b\,d\,e^3\,m+6\,B\,b^2\,d^3\,e\,m-2\,A\,b^2\,d^2\,e^2\,m^2-8\,A\,b^2\,d^2\,e^2\,m\right )}{e^4\,\left (m^4+10\,m^3+35\,m^2+50\,m+24\right )}+\frac {x^2\,\left (m+1\right )\,{\left (d+e\,x\right )}^m\,\left (B\,a^2\,e^2\,m^2+7\,B\,a^2\,e^2\,m+12\,B\,a^2\,e^2+2\,B\,a\,b\,d\,e\,m^2+8\,B\,a\,b\,d\,e\,m+2\,A\,a\,b\,e^2\,m^2+14\,A\,a\,b\,e^2\,m+24\,A\,a\,b\,e^2-3\,B\,b^2\,d^2\,m+A\,b^2\,d\,e\,m^2+4\,A\,b^2\,d\,e\,m\right )}{e^2\,\left (m^4+10\,m^3+35\,m^2+50\,m+24\right )}+\frac {B\,b^2\,x^4\,{\left (d+e\,x\right )}^m\,\left (m^3+6\,m^2+11\,m+6\right )}{m^4+10\,m^3+35\,m^2+50\,m+24}+\frac {b\,x^3\,{\left (d+e\,x\right )}^m\,\left (m^2+3\,m+2\right )\,\left (4\,A\,b\,e+8\,B\,a\,e+A\,b\,e\,m+2\,B\,a\,e\,m+B\,b\,d\,m\right )}{e\,\left (m^4+10\,m^3+35\,m^2+50\,m+24\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*x)*(d + e*x)^m*(a^2 + b^2*x^2 + 2*a*b*x),x)

[Out]

((d + e*x)^m*(24*A*a^2*d*e^3 - 6*B*b^2*d^4 + 8*A*b^2*d^3*e - 12*B*a^2*d^2*e^2 + 9*A*a^2*d*e^3*m^2 + A*a^2*d*e^
3*m^3 - 7*B*a^2*d^2*e^2*m + 16*B*a*b*d^3*e - B*a^2*d^2*e^2*m^2 - 24*A*a*b*d^2*e^2 + 26*A*a^2*d*e^3*m + 2*A*b^2
*d^3*e*m - 14*A*a*b*d^2*e^2*m - 2*A*a*b*d^2*e^2*m^2 + 4*B*a*b*d^3*e*m))/(e^4*(50*m + 35*m^2 + 10*m^3 + m^4 + 2
4)) + (x*(d + e*x)^m*(24*A*a^2*e^4 + 26*A*a^2*e^4*m + 9*A*a^2*e^4*m^2 + A*a^2*e^4*m^3 - 8*A*b^2*d^2*e^2*m + 7*
B*a^2*d*e^3*m^2 + B*a^2*d*e^3*m^3 - 2*A*b^2*d^2*e^2*m^2 + 12*B*a^2*d*e^3*m + 6*B*b^2*d^3*e*m + 14*A*a*b*d*e^3*
m^2 + 2*A*a*b*d*e^3*m^3 - 16*B*a*b*d^2*e^2*m - 4*B*a*b*d^2*e^2*m^2 + 24*A*a*b*d*e^3*m))/(e^4*(50*m + 35*m^2 +
10*m^3 + m^4 + 24)) + (x^2*(m + 1)*(d + e*x)^m*(12*B*a^2*e^2 + 24*A*a*b*e^2 + 7*B*a^2*e^2*m - 3*B*b^2*d^2*m +
B*a^2*e^2*m^2 + 14*A*a*b*e^2*m + 4*A*b^2*d*e*m + 2*A*a*b*e^2*m^2 + A*b^2*d*e*m^2 + 8*B*a*b*d*e*m + 2*B*a*b*d*e
*m^2))/(e^2*(50*m + 35*m^2 + 10*m^3 + m^4 + 24)) + (B*b^2*x^4*(d + e*x)^m*(11*m + 6*m^2 + m^3 + 6))/(50*m + 35
*m^2 + 10*m^3 + m^4 + 24) + (b*x^3*(d + e*x)^m*(3*m + m^2 + 2)*(4*A*b*e + 8*B*a*e + A*b*e*m + 2*B*a*e*m + B*b*
d*m))/(e*(50*m + 35*m^2 + 10*m^3 + m^4 + 24))

________________________________________________________________________________________

sympy [A]  time = 6.65, size = 6186, normalized size = 44.83

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)**m*(b**2*x**2+2*a*b*x+a**2),x)

[Out]

Piecewise((d**m*(A*a**2*x + A*a*b*x**2 + A*b**2*x**3/3 + B*a**2*x**2/2 + 2*B*a*b*x**3/3 + B*b**2*x**4/4), Eq(e
, 0)), (-2*A*a**2*e**3/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) - 2*A*a*b*d*e**2/(6*d**3*
e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) - 6*A*a*b*e**3*x/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e*
*6*x**2 + 6*e**7*x**3) - 2*A*b**2*d**2*e/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) - 6*A*b
**2*d*e**2*x/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) - 6*A*b**2*e**3*x**2/(6*d**3*e**4 +
 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) - B*a**2*d*e**2/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2
 + 6*e**7*x**3) - 3*B*a**2*e**3*x/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) - 4*B*a*b*d**2
*e/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) - 12*B*a*b*d*e**2*x/(6*d**3*e**4 + 18*d**2*e*
*5*x + 18*d*e**6*x**2 + 6*e**7*x**3) - 12*B*a*b*e**3*x**2/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e
**7*x**3) + 6*B*b**2*d**3*log(d/e + x)/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) + 11*B*b*
*2*d**3/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) + 18*B*b**2*d**2*e*x*log(d/e + x)/(6*d**
3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) + 27*B*b**2*d**2*e*x/(6*d**3*e**4 + 18*d**2*e**5*x + 1
8*d*e**6*x**2 + 6*e**7*x**3) + 18*B*b**2*d*e**2*x**2*log(d/e + x)/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x*
*2 + 6*e**7*x**3) + 18*B*b**2*d*e**2*x**2/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3) + 6*B*
b**2*e**3*x**3*log(d/e + x)/(6*d**3*e**4 + 18*d**2*e**5*x + 18*d*e**6*x**2 + 6*e**7*x**3), Eq(m, -4)), (-A*a**
2*e**3/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) - 2*A*a*b*d*e**2/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) - 4*
A*a*b*e**3*x/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) + 2*A*b**2*d**2*e*log(d/e + x)/(2*d**2*e**4 + 4*d*e**5*x
 + 2*e**6*x**2) + 3*A*b**2*d**2*e/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) + 4*A*b**2*d*e**2*x*log(d/e + x)/(2
*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) + 4*A*b**2*d*e**2*x/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) + 2*A*b**2
*e**3*x**2*log(d/e + x)/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) - B*a**2*d*e**2/(2*d**2*e**4 + 4*d*e**5*x + 2
*e**6*x**2) - 2*B*a**2*e**3*x/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) + 4*B*a*b*d**2*e*log(d/e + x)/(2*d**2*e
**4 + 4*d*e**5*x + 2*e**6*x**2) + 6*B*a*b*d**2*e/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) + 8*B*a*b*d*e**2*x*l
og(d/e + x)/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) + 8*B*a*b*d*e**2*x/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**
2) + 4*B*a*b*e**3*x**2*log(d/e + x)/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) - 6*B*b**2*d**3*log(d/e + x)/(2*d
**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) - 9*B*b**2*d**3/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) - 12*B*b**2*d**2
*e*x*log(d/e + x)/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) - 12*B*b**2*d**2*e*x/(2*d**2*e**4 + 4*d*e**5*x + 2*
e**6*x**2) - 6*B*b**2*d*e**2*x**2*log(d/e + x)/(2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2) + 2*B*b**2*e**3*x**3/(
2*d**2*e**4 + 4*d*e**5*x + 2*e**6*x**2), Eq(m, -3)), (-2*A*a**2*e**3/(2*d*e**4 + 2*e**5*x) + 4*A*a*b*d*e**2*lo
g(d/e + x)/(2*d*e**4 + 2*e**5*x) + 4*A*a*b*d*e**2/(2*d*e**4 + 2*e**5*x) + 4*A*a*b*e**3*x*log(d/e + x)/(2*d*e**
4 + 2*e**5*x) - 4*A*b**2*d**2*e*log(d/e + x)/(2*d*e**4 + 2*e**5*x) - 4*A*b**2*d**2*e/(2*d*e**4 + 2*e**5*x) - 4
*A*b**2*d*e**2*x*log(d/e + x)/(2*d*e**4 + 2*e**5*x) + 2*A*b**2*e**3*x**2/(2*d*e**4 + 2*e**5*x) + 2*B*a**2*d*e*
*2*log(d/e + x)/(2*d*e**4 + 2*e**5*x) + 2*B*a**2*d*e**2/(2*d*e**4 + 2*e**5*x) + 2*B*a**2*e**3*x*log(d/e + x)/(
2*d*e**4 + 2*e**5*x) - 8*B*a*b*d**2*e*log(d/e + x)/(2*d*e**4 + 2*e**5*x) - 8*B*a*b*d**2*e/(2*d*e**4 + 2*e**5*x
) - 8*B*a*b*d*e**2*x*log(d/e + x)/(2*d*e**4 + 2*e**5*x) + 4*B*a*b*e**3*x**2/(2*d*e**4 + 2*e**5*x) + 6*B*b**2*d
**3*log(d/e + x)/(2*d*e**4 + 2*e**5*x) + 6*B*b**2*d**3/(2*d*e**4 + 2*e**5*x) + 6*B*b**2*d**2*e*x*log(d/e + x)/
(2*d*e**4 + 2*e**5*x) - 3*B*b**2*d*e**2*x**2/(2*d*e**4 + 2*e**5*x) + B*b**2*e**3*x**3/(2*d*e**4 + 2*e**5*x), E
q(m, -2)), (A*a**2*log(d/e + x)/e - 2*A*a*b*d*log(d/e + x)/e**2 + 2*A*a*b*x/e + A*b**2*d**2*log(d/e + x)/e**3
- A*b**2*d*x/e**2 + A*b**2*x**2/(2*e) - B*a**2*d*log(d/e + x)/e**2 + B*a**2*x/e + 2*B*a*b*d**2*log(d/e + x)/e*
*3 - 2*B*a*b*d*x/e**2 + B*a*b*x**2/e - B*b**2*d**3*log(d/e + x)/e**4 + B*b**2*d**2*x/e**3 - B*b**2*d*x**2/(2*e
**2) + B*b**2*x**3/(3*e), Eq(m, -1)), (A*a**2*d*e**3*m**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**
2 + 50*e**4*m + 24*e**4) + 9*A*a**2*d*e**3*m**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**
4*m + 24*e**4) + 26*A*a**2*d*e**3*m*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**
4) + 24*A*a**2*d*e**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + A*a**2*e*
*4*m**3*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 9*A*a**2*e**4*m**2*x*
(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 26*A*a**2*e**4*m*x*(d + e*x)**m
/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 24*A*a**2*e**4*x*(d + e*x)**m/(e**4*m**4 +
10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 2*A*a*b*d**2*e**2*m**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*
m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 14*A*a*b*d**2*e**2*m*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*
e**4*m**2 + 50*e**4*m + 24*e**4) - 24*A*a*b*d**2*e**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 +
50*e**4*m + 24*e**4) + 2*A*a*b*d*e**3*m**3*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m
 + 24*e**4) + 14*A*a*b*d*e**3*m**2*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e*
*4) + 24*A*a*b*d*e**3*m*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 2*A*a
*b*e**4*m**3*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 16*A*a*b*e**4
*m**2*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 38*A*a*b*e**4*m*x**2
*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 24*A*a*b*e**4*x**2*(d + e*x)**
m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 2*A*b**2*d**3*e*m*(d + e*x)**m/(e**4*m**4
+ 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 8*A*b**2*d**3*e*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3
+ 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 2*A*b**2*d**2*e**2*m**2*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*
e**4*m**2 + 50*e**4*m + 24*e**4) - 8*A*b**2*d**2*e**2*m*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**
2 + 50*e**4*m + 24*e**4) + A*b**2*d*e**3*m**3*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*
e**4*m + 24*e**4) + 5*A*b**2*d*e**3*m**2*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*
m + 24*e**4) + 4*A*b**2*d*e**3*m*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e
**4) + A*b**2*e**4*m**3*x**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 7*
A*b**2*e**4*m**2*x**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 14*A*b**2
*e**4*m*x**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 8*A*b**2*e**4*x**3
*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - B*a**2*d**2*e**2*m**2*(d + e*x
)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 7*B*a**2*d**2*e**2*m*(d + e*x)**m/(e**4
*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 12*B*a**2*d**2*e**2*(d + e*x)**m/(e**4*m**4 + 10*
e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + B*a**2*d*e**3*m**3*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3
+ 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 7*B*a**2*d*e**3*m**2*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**
4*m**2 + 50*e**4*m + 24*e**4) + 12*B*a**2*d*e**3*m*x*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 5
0*e**4*m + 24*e**4) + B*a**2*e**4*m**3*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m
+ 24*e**4) + 8*B*a**2*e**4*m**2*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e*
*4) + 19*B*a**2*e**4*m*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 12*
B*a**2*e**4*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 4*B*a*b*d**3*e
*m*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 16*B*a*b*d**3*e*(d + e*x)**m
/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 4*B*a*b*d**2*e**2*m**2*x*(d + e*x)**m/(e**4
*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 16*B*a*b*d**2*e**2*m*x*(d + e*x)**m/(e**4*m**4 +
10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 2*B*a*b*d*e**3*m**3*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**
4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 10*B*a*b*d*e**3*m**2*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**
3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 8*B*a*b*d*e**3*m*x**2*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e*
*4*m**2 + 50*e**4*m + 24*e**4) + 2*B*a*b*e**4*m**3*x**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2
+ 50*e**4*m + 24*e**4) + 14*B*a*b*e**4*m**2*x**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e*
*4*m + 24*e**4) + 28*B*a*b*e**4*m*x**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*
e**4) + 16*B*a*b*e**4*x**3*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 6*B*
b**2*d**4*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 6*B*b**2*d**3*e*m*x*(
d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 3*B*b**2*d**2*e**2*m**2*x**2*(d
+ e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) - 3*B*b**2*d**2*e**2*m*x**2*(d + e*x
)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + B*b**2*d*e**3*m**3*x**3*(d + e*x)**m/(e
**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 3*B*b**2*d*e**3*m**2*x**3*(d + e*x)**m/(e**4*m
**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 2*B*b**2*d*e**3*m*x**3*(d + e*x)**m/(e**4*m**4 + 10
*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + B*b**2*e**4*m**3*x**4*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**
3 + 35*e**4*m**2 + 50*e**4*m + 24*e**4) + 6*B*b**2*e**4*m**2*x**4*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*
e**4*m**2 + 50*e**4*m + 24*e**4) + 11*B*b**2*e**4*m*x**4*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2
 + 50*e**4*m + 24*e**4) + 6*B*b**2*e**4*x**4*(d + e*x)**m/(e**4*m**4 + 10*e**4*m**3 + 35*e**4*m**2 + 50*e**4*m
 + 24*e**4), True))

________________________________________________________________________________________